22 research outputs found

    Luminal-Applied Flagellin Is Internalized by Polarized Intestinal Epithelial Cells and Elicits Immune Responses via the TLR5 Dependent Mechanism

    Get PDF
    Bacteria release flagellin that elicits innate responses via Toll-like receptor 5 (TLR5). Here, we investigated the fate of apically administrated full length flagellin from virulent and avirulent bacteria, along with truncated recombinant flagellin proteins in intestinal epithelial cells and cellular responses. Flagellin was internalized by intestinal epithelial cell (IEC) monolayers of IEC-18. Additionally, apically applied flagellin was internalized by polarized human Caco-2BBe and T-84 cells in a TLR5 dependent mechanism. More, flagellin exposure did not affect the integrity of intestinal monolayers. With immunofluorescent staining, internalized flagellin was detected in both early endosomes as well as lysosomes. We found that apical exposure of polarized Caco-2BBe and T-84 to flagellin from purified Salmonella, Escherichia coli O83:H1 (isolate from Crohn’s lesion) or avirulent E. coli K12 induced comparable levels of basolateral IL-8 secretion. A recombinant protein representing the conserved amino (N) and carboxyl (C) domains (D) of the flagellin protein (ND1/2ECHCD2/1) induced IL-8 secretion from IEC similar to levels elicited by full-length flagellins. However, a recombinant flagellin protein containing only the D3 hypervariable region elicited no IL-8 secretion in both cell lines compared to un-stimulated controls. Silencing or blocking TLR5 in Caco-2BBe cells resulted in a lack of flagellin internalization and decreased IL-8 secretion. Furthermore, apical exposure to flagellin stimulated transepithelial migration of neutrophils and dendritic cells. The novel findings in this study show that luminal-applied flagellin is internalized by normal IEC via TLR5 and co-localizes to endosomal and lysosomal compartments where it is likely degraded as flagellin was not detected on the basolateral side of IEC cultures

    M(atrix) Theory: Matrix Quantum Mechanics as a Fundamental Theory

    Get PDF
    A self-contained review is given of the matrix model of M-theory. The introductory part of the review is intended to be accessible to the general reader. M-theory is an eleven-dimensional quantum theory of gravity which is believed to underlie all superstring theories. This is the only candidate at present for a theory of fundamental physics which reconciles gravity and quantum field theory in a potentially realistic fashion. Evidence for the existence of M-theory is still only circumstantial---no complete background-independent formulation of the theory yet exists. Matrix theory was first developed as a regularized theory of a supersymmetric quantum membrane. More recently, the theory appeared in a different guise as the discrete light-cone quantization of M-theory in flat space. These two approaches to matrix theory are described in detail and compared. It is shown that matrix theory is a well-defined quantum theory which reduces to a supersymmetric theory of gravity at low energies. Although the fundamental degrees of freedom of matrix theory are essentially pointlike, it is shown that higher-dimensional fluctuating objects (branes) arise through the nonabelian structure of the matrix degrees of freedom. The problem of formulating matrix theory in a general space-time background is discussed, and the connections between matrix theory and other related models are reviewed.Comment: 56 pages, 3 figures, LaTeX, revtex style; v2: references adde

    Molecular Characterization of fliD Gene Encoding Flagellar Cap and Its Expression among Clostridium difficile Isolates from Different Serogroups

    No full text
    The fliD gene encoding the flagellar cap protein (FliD) of Clostridium difficile was studied in 46 isolates belonging to serogroups A, B, C, D, F, G, H, I, K, X, and S3, including 30 flagellated strains and 16 nonflagellated strains. In all but three isolates, amplification by PCR and reverse transcription-PCR demonstrated that the fliD gene is present and transcribed in both flagellated and nonflagellated strains. PCR-restriction fragment length polymorphism (RFLP) analysis of amplified fliD gene products revealed interstrain homogeneity, with one of two major patterns (a and b) found in all but one of the strains, which had pattern c. A polyclonal monospecific antiserum raised to the recombinant FliD protein reacted in immunoblots with crude flagellar preparations from 28 of 30 flagellated strains but did not recognize FliD from nonflagellated strains. The fliD genes from five strains representative of the three different RFLP groups were sequenced, and sequencing revealed 100% identity between the strains with the same pattern and 88% identity among strains with different patterns. Our results show that even though FliD is a structure exposed to the outer environment, the flagellar cap protein is very well conserved, and this high degree of conservation suggests that it has a very specific function in attachment to cell or mucus receptors

    The stem cell transcription factor ZFP57 induces IGF2 expression to promote anchorage-independent growth in cancer cells

    Get PDF
    Several common biological properties between cancer cells and embryonic stem (ES) cells suggest the possibility that some genes expressed in ES cells might have important roles in cancer cell growth. The transcription factor ZFP57 is expressed in self-renewing ES cells and its expression level decreases during ES cell differentiation. This study showed that ZFP57 is involved in the anchorage-independent growth of human fibrosarcoma HT1080 cells in soft agar. ZFP57 overexpression enhanced, whereas knockdown suppressed, HT1080 tumor formation in nude mice. Furthermore, ZFP57 regulates the expression of insulin-like growth factor 2 (IGF2), which has a critical role in ZFP57-induced anchorage-independent growth. ZFP57 also promotes anchorage-independent growth in ES cells and immortal fibroblasts. Finally, immunohistochemical analysis revealed that ZFP57 is overexpressed in human cancer clinical specimens. Taken together, these results suggest that the ES-specific transcription factor ZFP57 is a novel oncogene.Oncogene advance online publication, 27 January 2014; doi:10.1038/onc.2013.599

    Role of Helicobacter pylori cag Region Genes in Colonization and Gastritis in Two Animal Models

    No full text
    The Helicobacter pylori chromosomal region known as the cytotoxin-gene associated pathogenicity island (cag PAI) is associated with severe disease and encodes proteins that are believed to induce interleukin (IL-8) secretion by cultured epithelial cells. The objective of this study was to evaluate the relationship between the cag PAI, induction of IL-8, and induction of neutrophilic gastric inflammation. Germ-free neonatal piglets and conventional C57BL/6 mice were given wild-type or cag deficient mutant derivatives of H. pylori strain 26695 or SS1. Bacterial colonization was determined by plate count, gastritis and neutrophilic inflammation were quantified, and IL-8 induction in AGS cells was determined by enzyme-linked immunosorbent assay. Deletion of the entire cag region or interruption of the virB10 or virB11 homolog had no effect on bacterial colonization, gastritis, or neutrophilic inflammation. In contrast, these mutations had variable effects on IL-8 induction, depending on the H. pylori strain. In the piglet-adapated strain 26695, which induced IL-8 secretion by AGS cells, deletion of the cag PAI decreased induction. In the mouse-adapted strain SS1, which did not induce IL-8 secretion, deletion of the cagII region or interruption of any of three cag region genes increased IL-8 induction. These results indicate that in mice and piglets (i) neither the cag PAI nor the ability to induce IL-8 in vitro is essential for colonization or neutrophilic inflammation and (ii) there is no direct relationship between the presence of the cag PAI, IL-8 induction, and neutrophilic gastritis

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease
    corecore